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A 2-ft length of X-band waveguide (WR-90) was
measured by this method and a dissipative loss of
0.1240.02 dB was found at 8700 MHz. If the correction
for the short cavity had been neglected, the apparent
loss would have been 0.18 dB. The irises were made
from 0.020-in copper by punching 3/16-in diameter
holes.

CONCLUSIONS

Since the losses of both irises and the launching and
receiving sections are all lumped together, the correc-
tion for these losses is approximate. However, the wave-
guide-attenuation measurement is practical only when
these losses are small enough so that the approximation
introduces negligible error. At the same time, these
losses are often too large to be neglected entirely.

The curve-fitting algorithm that has been described
is capable of determining the Q of microwave circuits
with as much accuracy and reproducibility as can be
hoped for in dealing with practical circuits. The repro-
ducibility of connections is generally the limiting factor

in circuits of the type studies. (Special cavities could be
designed as Q standards for more critical evaluation of
reproducibility and for intercomparison of different
instruments and methods.)

The algorithm has a modest ability to find and con-
verge upon a resonance, if given a good initial guess,
which is usually a simple matter in production testing of
similar parts.

However, the search capability could be enhanced by
using the measured transmission magnitude as a weight-
ing factor, This technique would increase the computa-
tion required but would make better use of the mea-
surements.
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Impedance Measurements of Microwave Lumped
Elements from 1 to 12 GHz

ROBERT E. DEBRECHT, MEMBER, IEEE

Abstract—The impedance measurement of small, microwave
lumped elements of the order of 1 mm has been extended up to
12 GHz by a technique in which the frequency and @ of a resonant
transmission line are perturbed by the connecticn of a lumped ele-
ment. With the use of low-loss resonant coaxial lines, the technique
has been applied to the measurement of lumped-element capacitors
ranging from 0.4 to 3.6 pF and inductors ranging from 1.1 to 4.3 nH.
Conductor @ values for capacitors as high as 1700 at 1.4 GHz and
100 at 12 GHz have been measured and estimates of dielectric @
values for capacitors of over 5000 have been obtained. Single-turn
1.1-nH inductor Q’s of 40 at 1 GHz and 90 at 7 GHz have also been
measured. The capacitors and single-turn inductors are found to
have constant C and L values up to 12 GHz.
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I. INTRODUCTION
&_ T MICROWAVE frequencies the increasing use of

solid-state active devices and the trend toward

smaller electronic packages has stimulated an
interest in replacing distributed circuits with smaller
sized lumped-element circuits. In the past the use of
lumped elements has been limited in frequency to below
1 GHz by problems of fabrication and relatively high
losses. However, because of recent advancements in the
technology of thin-film fabrication [1], [2], low-loss
lumped-element circuits capable of competing with
distributed circuits have been made in the S- and
C-band ranges [1]-[6]. Unfortunately, the losses of
lumped elements operating in the gigahertz range have
been difficult to measure. The smaller sizes and lower
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Fig. 1. (a) Schematic representation of a transmission line. (b) The
standing waves for two modes of resonance. (c) Series connec-
tion of a capacitor and the resulting standing-wave pattern.

resistances of the elements, and problems arising from
radiation have placed frequency limitations on conven-
tional measurement techniques. The commonly used
technique, a slotted-line measurement, is limited to
below 3 GHz by measurement accuracy and the magni-
tude of the corrections that must be made to the mea-
sured data [7].

‘This paper describes a resonance measurement tech-
nique capable of measuring the loss of the high-fre-
quency lumped elements. The application of the tech-
nique to the measurement of lumped-element inductors
and capacitors from 1 to 12 GHz and the results of the
measurements are presented.

II. ToroRETICAL CONSIDERATIONS

The technique developed here for the measurement of
lumped-element impedance values makes use of the
frequency and Q of a resonant transmission line. By
connecting a lumped element to the line, the frequency
of resonance and Q are perturbed; and from the per-
turbations, the impedance of the element can be found.
Since the transmission line resonates at multiples of
some basic frequency, the impedance of the lumped
element can be found as a function of frequency.

Fig. 1(a) shows a generalized, open-ended transmis-
sion line with characteristic impedance Z, and propaga-
tion constant 3. It resonates when

Ly’ (1>
where # is the order of resonance, and / is the length of

the transmission line. The standing wave patterns for
the two lowest order modes are shown in Fig. 1(b).
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Fig. 2. Resonant system, “01,” composed of a transmission line,
“0,” with an input lmpedance Zin, and a lumped-element equiv-
alent circuit, “1,” with an impedance of Zi.

A lumped element will perturb the standing-wave
pattern when it is connected in shunt between the two
conductors where a voltage exists, or when it is con-
nected in series with one connector where a current
exists. Fig. 1(c) shows an example of the latter case
where the series connection of the capacitor at the mid-
point of the line has perturbed mode 1 of Fig. 3(b).
Mode 2 is not perturbed since the current is zero at the
midpoint and no voltage is developed across the
capacitor.

Although the element can be connected anywhere
along the transmission line, the two most convenient
places are the midpoint and the ends. In general, the
series connection of an element at the midpoint affects
the odd-order modes, and the shunt connection affects
the even-order modes. An end connection of the element
affects all modes.

The impedance of the lumped element, expressed
here in terms of reactance and Q values, is found from
the frequencies and Q’s of the transmission line before
and after the insertion of the lumped element. Fig. 2
shows a transmission line “0,” open circuited at one
end, and connected to a lumped element “1,” at the
other. The combined system “01” resonates when

X1 = Z,coth 2

where X is reactive part of Zi, and @ is the electrical
length of the transmission line. From (16) in the
Appendix,

0=in7r (3)

n

where f is the frequency of resonance of system “01,”
and f, is the nth order resonance frequency of the trans-
mission line when both ends are open circuited. Thus
the reactance of the lumped element is determined from
the two frequencies of resonance.

The Q values for the separate parts of the resonant
system “01” add according to their weighted reciprocals
as derived in the Appendix (23)

Un U, Ui
= e (4)
QOI QO Q1'
The weighting factors Uy, U and Ui are the stored
energies of the combined system, transmission line, and
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Fig. 3. Schematic of a transmission line showing adjustable coupling
to the generator and detector. 8: and B: are coupling coeffi-
cients.

lumped element, respectively, and are calculated from
the values of the lumped element and electrical length
of the line. For example, if the lumped element is an
inductor, the definitions of the stored energies given in
the Appendix lead to

1 Ly ?
vo=— 2 [ s Goyagn  ©
2 BJy :
1
Us = L{Losin 0)* 6)
and
Upy=Us+ U, (N

where Ly is the inductance per unit length of the line,
and L is the inductance of the inductor.

Qo is the measured Q of the system “01,” and Q, is
the Q of the transmission line interpolated to the reso-
nant frequency of the combined system. Thus, with the
known values of stored energy, Q1 can be calculated.

The accuracy of this. measurement technique in-
creases as the ratio Ui/Q; of (4) becomes larger com-
pared to Uy/Qp. Thus, for the best accuracy, both the
unmodified Q of the transmission line Qo, and the ratio
of energy stored in the lumped element to that of the
line Ui/ U,, should be as large as possible. Ui/ U, is de-
pendent on the Z, of the line.

The resonant frequencies and Q’'s of the transmission
line can be measured by transmission or reflection meth-
‘ods as discussed in Ginzton [8]. Fig. 3 shows one method
of coupling the generator and detector to the transmis-
sion line for transmission measurements. The coupling
coefficients B; and B3, are adjusted by moving the end
connectors back and forth, When both coupling coeffi-
cients are equal® and the transmitted power is 40 dB
down from the incident power, the measured Q is within
1 percent of the unloaded Q of the transmission line.
Rather than being variable, the end couplers can be
fixed; in this case, 81 and 8; may have to be measured to
find the unloaded Q. The transmission method is the
least complicated and can be the most accurate.

The reflection method of measuring Q has the advan-
tage of requiring only a one-port connection of the gen-
erator and the detector. Consequently, there is a greater
degree of freedom in the construction of the transmis-

-sion line and in the connection of the lumped element.

1 For a detector capable of measuring phase, the condition of
B1=p: can be achieved by moving the transmission line back and
forth between fixed couplers until the phase is an extremum., :
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Fig. 4. Resonator used for the Q measurement of capacitors.

Reflection methods have the disadvantage that the
determination of Q depends upon the value of the
coupling coefficient, which is hard to determine ac-
curately at frequencies in the S-band range and above.?

Both coaxial and microstrip lines are suitable for use
as transmission-line resonators. Coaxial lines have the
advantages of high Q (400 at 1 GHz), negligible disper-
sion, and low radiation. Microstrip lines have the ad-
vantage of open construction, and thus are more ac-
cessible for the connection of the lumped element.
However, their disadvantages of lower Q (250 at 1 GHz)
dispersion: and radiation make them less desirable than
coaxial lines for lumped-element measurements above

6 GHz.

III. TEST JiGs AND MEASUREMENT TECHNIQUES

Examples of coaxial-line resonators used for the
measurement of lumped elements are shown in Figs. 4,
5, 7, and 8. The characteristic impedance of the lines is
50 Q, which results in reasonable Ui/U, values for
capacitances of about 1 pF and inductances of about
1 nH.

Fig. 4 shows the coaxial transmission line that is used
for measuring capacitors.® [ts center conductor is a
50-mil diameter gold-plated rod, which is insulated from
the 162-mil (ID) outer copper conductor by Teflon
sleeves that cover its entire length. Two copper sleeves
with attached omni spectra miniature (OSM) connec-
tors are used to make sliding electrical connections with
the outer conductor. In a manner similar to that shown
in Fig. 3, they provide adjustable coupling to the
(Q-measurement instruments.

The center conductor is severed electrically in the
middle to allow for the series connection of a capacitor
as shown in the close-up views of Fig. 5. The top view
is of a gold-plated quartz rod, with about 10 mils of the
plating removed in the middle. A unit of four 0.4-pF
capacitors is shown “waxed down” to the conductor,
with one of the capacitors bonded between the two
halves of the conductor. The lower view shows two gold-
plated copper rods joined with a polyethylene dowel
with about a 5- to 10-mils spacing between them. One of

2 A reflection method for determining @ from the frequencies of
resonance and extrema in phase (see Ginzton's Eqs. 9.82 and 9.20
[8]) minimizes the dependency of Q on the coupling coefficients.
While still more time consuming than the transmission method, it
has proven to be equally accurate. , .

8 This configuration was originally devised by Hughes, Napoli,
and Reichert of RCA Laboratories to measure the resistance of
Schottky-barrier diodes [9]. . :
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Fig. 5. Enlarged view of the center conductor of the coaxial reso-
nator of Fig. 4 showing the capacitor placement and bonding.
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Fig. 6. Equivalent circuit for the capacitor bonded to the

coaxial resonator of Fig. 4.

Fig. 7. Coaxial resonator used for the  measurements of inductors,

the four 0.4-pF capacitors is shown bonded between the
two halves. The bond wires are as short as possible to
minimize their series resistance. The gap in the rod and
the size of the capacitor are kept much smaller than a
half wavelength to allow a lumped-element equivalent-
model analysis. '

Fig. 6 is a drawing of the transmission line with the
capacitor attached, and the equivalent-circuit model
that results. ¢’ is the capacitance of the gap between
the two center conductors, L is the inductance of the
bond wire, and C is the capacitance of the capacitor.

The coaxial transmission line used for the measure-
ment of inductors is shown in Fig. 7. It is a 3-in length
of commercially available semirigid cable with a 36-mil
diameter inner conductor. As with the previous line, the
copper sleeves at either end (with OSM connector at-
tached) provide adjustable coupling to the Q-measure-
ment instruments. .

Lumped-element inductors cannot be inserted into
the coaxial line without causing problems of mutual
inductance and standing wave/inductor interactions.

Fig. 8. Close-up view of the resonator in Fig. 7, showing
the inductor placement and bonding.
f
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Fig. 9. The equivalent circuit for the inductor bonded

to the resonator of Fig. 7

Consequently, they are mounted outside the coaxial
line and are connected in shunt between the outer and
inner conductors. Access to the inner conductor is pro-
vided by a “pin” inserted through a hole in the outer
conductor. Fig. 8 shows a close-up view of a 2-turn
inductor connected between the outer conductor and the
pin. The plane of the inductor is at right angles to the
outer conductor to reduce the mutual coupling.

The brass disks shown in Fig. 7 suppress radiation and
wave propagation down the outside of 'the line. For a
disk-to-inductor spacing of less than A/8, the effects of
these losses are negligible.

Fig. 9 shows the inductor connected to the coaxial
line and the resulting equivalent-circuit model. L’ and
C' are the inductance of the pin and the capacitance
between the pin and outer conductor, respectively. L is
the inductance of the inductor and bond wire. For
spiral- or multi-turn inductors, there is an interturn
capacitance; and L should be replaced by a bond-wire
inductance in series with a distributed LC combination
for the inductor. To the first approximation, the LC
combination can be represented by a lumped parallel
LC circuit.

The extraneous capacitors and inductors introduced
with the connection of the lumped element must be
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TABLE 1

SAMPLE DATA AND RESULTS FOR THE MEASUREMENT
OF A LuMPED-ELEMENT CAPACITOR

f (GH2) f, (GHz) JiC(pF}) Q Q, Qe
1.39419 [ 177188 0.75 300 420 620
6.23909 | 710061 0.7) 428 770 311

characterized in order to determine the reactance and
Q of the lumped element. This is accomplished by mak-
ing successive measurements—beginning with the un-
modified transmission line, making one change at a time
and ending with the connection of the lumped element.
For example, in Fig. 6 C’ and its Q are determined before
the capacitor is bonded into place. The inductance L
and the Q of the bond wire are determined with the
capacitor bonded into place, but short-circuited.
Finally, C and its Q are determined with the capacitor
open-circuited.

Whenever two elements cannot be physically sepa-
rated, such as L’ and C’ of Fig. 9 (without the inductor
L), their L and C values are determined from straight-
line plots of functions of w and impedance versus w? (for
example, —jZw=w?L'—1/C").

Table I shows two sets of sample data and results for -

the measurement of a lumped-element capacitor con-
nected as shown in Fig. 6. The data are the resonance
frequencies and Q values of the transmission line before
the line is modified (fo, Qo) and after the capacitor is
connected (f, Q). The capacitance C is calculated from
f and fo, knowing the values of C’ and L of Fig. 6 (C’
=0.11 pF, L=0.80 nH). The Q of the capacitor Q¢ is
calculated from Q and Q, ,knowing C’, L, C, and the Q
values of C’ and L. Qy given in Table I is interpolated to
the frequency f as discussed in the Appendix.

IV. REsuLTs AND DiscussioN

Using the coaxial transmission-line resonators and
the methods discussed in the previous section, lumped-
element capacitors from 0.4 to 3.6 pF, and inductors
from 1.0 to 4.3 nH in value have been measured at fre-
quencies from 1 to 12 GHz. The results of the measure-
ments are given below.

A. Capacitors

Fig. 10 shows Q versus frequency data for three
capacitors and for Q,, the Q of the unmodified trans-
mission line. The 0.9- and 3.6-pF capacitors have highly
densified, low-etch-rate dielectrics,* and both capacitors
have about equal series resistances. From the Q-versus-
frequency curves, their Q values vary nearly as f~3/2,
and are inversely proportional to the capacitance. The
0.75-pF capacitor has a less-densified, higher etch-rate
dielectric. The resistive effects of the bond wire are
“subtracted out” from the over-all Q of the capacitor so

4 Generally, a highly densified SiO; dielectric has a low etch rate
and a low loss.
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Fig. 10. Q versus frequency for three capacitors and for the unper-
turbed resonant system (Qy line). The 0.75-pF capacitor (corrected
for bond wire) shows the effect of dielectric loss,

that the Q values shown in Fig. 10 are due to the capaci-
tor losses only.? The Q-versus-frequency curve of this
capacitor is almost flat at low frequencies. Similar
curves have been obtained for several 0.4-pF capacitors.
The capacitance values for all the capacitors are con-
stant to within +10 percent through 12 GHz.

It is expected that the losses of a capacitor result
from two sources: the dielectric material and the metal
conductors. Correspondingly, the Q of the capacitor can
be divided into two terms [6]. The equation for the Q
of a capacitor with conductor loss only is

3w
2RwCl

Qc = (8)

where C is the capacitance, R, is the sheet resistance of
the metal plates, W is the width, 7 the length, and w is
the angular frequency. Q. varies as f~*/? (since R,
changes with skin depth), and inversely with capaci-
tance. The Q of a capacitor with dielectric loss only, is

1

tan é

Qa = )

The loss tangent of the material, tan 8, and therefore
Qq, is approximately constant with frequency. The Q of

5 The other two capacitors were soldered upside down to the
center conductor, and no attempt was made to substract the resistive
losses of the solder bonds.
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Fig. 11. Q versus frequency for a one-turn 1.1-nH inductor (cor-
fecged and uncorrected for bond wire), and for the bond-wire
eads.

a capacitor with both kinds of loss is
1 1 n 1
Q Q Qu
Fitting (10) to the data gives an estimate of the di-
electric and conductor Q values of the capacitor. The
straight lines of the 0.9- and 3.6-pF capacitors, and the
inverse variation of Q with capacitance suggest a con-
ductor loss only. For the 0.9-pF capacitor this gives an
estimate for Q; of Q;>35000 (since for 0;<3 Q,, the
effect of a dielectric Q is noticeable). From the less
densified 0.75-pF capacitor, estimates of Q; =600 and
Q.=7200 at 1 GHz are obtained. Similar results have
been obtained from the three 0.4-pF capacitors.

From the estimates of Q,, a lower limit to the con-
ductor Q of square copper capacitors is,

5400
f3*(GHZ)C (pF)

(10)

Q. > (11)
The difference between the experimentally determined
constant 5400 and the theoretically expected value of
29 000 based on the bulk resistivity of copper is not
fully explained, although limitations on the exact deter-
mination of the constant, the roughness of the surface,
and the quality of the evaporated films are important
factors.

B. Inductors

Fig. 11 shows Q-versus-frequency curves for a single-
turn inductor with and without the resistance of the
bond wire (corrected and uncorrected, respectively), and
for the bond wire itself. The Q for the inductor (cor-
rected) increases as fY/2 at frequencies below 4 GHz as
expected from the theoretical expression,.

wL

Q= = (12)

where L is the inductance and R is the series resistance.
The value for Q at 2 GHz corresponds to that predicted
from theory [1]. Above 4 GHz the Q falls off from its
fY2% variation and eventually decreases. The reason for
the fall-off and decrease is not known although current
crowding and radiation are possible explanations. All
inductors measured exhibit the same fall-off at the
higher frequencies. The measured inductance of 1.1 nH,
which is constant to within +5 percent through 12 GHz,
is equal to that predicted from theory [1] [10].

Multi-turn or spiral inductors (see Fig. 8) are found
to have higher Q and inductance values per square area
than single-turn inductors, although the Q values are
less than predicted (from [1]) and the Q-versus-fre-
quency plots fall off at lower frequencies. The measured
and theoretical values of inductance are nearly the
same.

A spiral-turn inductor has an associated interturn
capacitance that resonates with the inductance. The
self-resonance frequencies of these inductors is much
lower than those for a single-turn inductor. For example,
a two-turn, 2.9-nH inductor can have a self-resonance
frequency of 8 to 10 GHz, whereas a single-turn 1.1-nH
inductor shows no distributed effects up to 12 GIHz.

V. CoNCLUSIONS

A technique for the measurement of reactance and
Q values of small, microwave lumped-element inductors
and capacitors has been presented. It extends the capa-
bility for lumped-element measurements up to 12 GHz
by making use of the accurately measured frequencies
and Q’s of resonant coaxial lines. Using the technique,
Q values as high as 1700 at 1.4 GHz and 100 at 12 GHz
have been measured. The results of measurements on
capacitors and inductors show that lumped elements
can be fabricated with low loss and constant L and C
values through X band.

APPENDIX

Presented below are the derivations of the equations
for calculating the reactance and Q of a lumped element
from the measured resonance frequency and Q data. It
is assumed, in all cases, that the reactances are much
larger than the resistances so that the two can be treated
separately.

A. Resonance Condition

Fig. 2 shows an open-circuited transmission line “0,”
with an input impedance Z:,, connected to a lumped-
element circuit “1,” with impedance Z;. Neglecting the
resistances, the combined system resonates when the
reactive part at Z; is equal to the complex conjugate of
Zin, or

le =]ZO cot 6 (13)

where
2afl

o = (14)

?
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and f, /, and v are the frequency of resonance, the length,
and the velocity of wave propagation of the transmis-
sion line, respectively, and X, is the reactance of the
lumped-element circuit.
Without the lumped elements attached, the trans-
mission line resonates when
) _ 2l

?

(15)

where f, is the nth-order resonance frequency. Substi-
tuting (15) into (14) gives @ in terms of two resonance
frequencies,

(16)

8 = —nmr.

a

Combining (16) and (13) results in the final equation
for the resonance condition,

X:= Zcot (}]-:; mr).

If the lumped-element circuit is connected in the middle
of the transmission line, f is replaced by f/2; also, for a
series connection, Z, is replaced by 2Z,, and for a shunt
connection Z, is replaced by Z,/2.

The reactance Xy of the lumped-element circuit is
determined from f, f., %, and Z,. As mentioned in Sec-
tion I1I, when Z; is due to more than one element, the
reactance of each element is determined by successive
measurements.

an

B. The Q Equation

Reference to Fig. 2 shows that the total power loss of
the resonant system “01” is equal to the power losses
of the transmission line “0,” and the lumped-element

circuit “1” (which consists of ¢ elements) :
Py = Po+ 2 Pu. (18)

The quality factor Q of a resonant system is related

to the power loss P and the stored energy U of the
system by,
wlU
=—". 19
7 (19)
Thus for the combined system “01,”
ol 01
Qo1 = . (20)
01 P01

For the 7th lumped element of circuit 1, Q is defined as,

wUq;
;= 21
Q1 Iy (21)

where Uy, is the maximum energy stored in the element.
This definition is equivalent to the conventional defini-
tions of the Q for lumped elements.

A Q variable, Qo is defined for the transmission line

47

uo’»_ as,
on

Py

0 (22)
where U, is the energy stored in the transmission line
when the current is maximum. @, corresponds to the
measured Q when the transmission line is self-resonant;
and for transmission lines with a series loss only, such
as the coaxial lines described in Section III, Q, is a
“straight-line” function of frequency when plotted on
log—log paper.
Substituting (20), (21), and (22) into (18) gives:
UOI Uli

U,y
_._=_+ —_
QOI QO Z Qn‘

This corresponds to (4) in the text, where only one
lumped element is considered. The Q of the jth element
(1; can be found by rewriting (23) as,

(23)

Ll T g Iy
Qu  Uu\Qu Qo Q1
where Z’ is the sum for all 4, ¢5%7.
The stored energy for the transmission line is
1 Ly 0 .
Ug = — -—f (I sin (Bx))2d(Bx) (25)
2 BYo
1 Z, .
= — — I,%(20 — sin 26) (26)
8 w

where 0 is defined in (16). The maximum energy stored
in each of the lumped elements U; is calculated from a
knowledge of the current going into the entire lumped
element system, the current in the transmission line,

I = Jysin@ (27)

the particular circuit model of Zy, and the values of the
lumped elements. The total stored energy can be calcu-
lated for the maximum current condition, where

Un=Us+ 22" Un (28)

where »." is the summation of Uy for inductors only
(k7).

Equations (26), (27), and (28) apply for the case
where the lumped element is connected in the middle of
the transmission line when the substitutions following
(17) are made.

Qo is the Q of the transmission line interpolated from
the measured Q versus frequency data to the resonance
frequency of the combined system “01,” and Qo is the
measured Q of system “01.” The Qi; are the Q’s of the
“2” lumped elements, which are determined by separate
measurements.
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Digitized Antenna Measurements

JAKOB DIJK, CORSTIAAN KRAMER, EDUARD J. MAANDERS, SENIOR MEMBER, IEEE,
AND ADRIAAN C. A. van DER VORST

Abstract—A low-cost automated measuring method is presented
to determine the directive gain and relative phase of microwave
antenna feed systems in digital form. Using large existing computer
facilities, the output data may be used as input data to compute
secondary patterns of arbitrary reflector antennas. The use of step-
ping motors is a key for cheaper and easier operations.

INTRODUCTION
]:[N MODERN ANTENNA engineering, especially

for long-range radar, radio astronomy, satellite

communications ground stations, or multibeam
antenna systems for satellites, it is very important to
know the antenna pattern as regards amplitude and
phase and its polarization in all directions. Mostly, the
current distribution method is used to calculate the
entire radiation pattern of bodies of revolution.

Silver [1, p. 420] has developed a number of formulas
enabling one to calculate the secondary pattern of a
paraboloid with the source at the focus, while Rusch
[2], [3] has demonstrated that the same technique may
be used for a hyperboloid or ellipsoid. It is not the pur-
pose of this paper to go into details with regard to the
complicated equations used for calculation, but it ap-
pears that in all equations the directive gain D(9, ¢) [4]
and its relative phase pattern of the primary feed play
an important role. Other applications, such as designing
double reflector systems [5] with high efficiency, require
detailed information with regard to the feed pattern.
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Sometimes the performance of an antenna system may
be predicted by using “theoretical” feeds, the class of
circular symmetrical feed patterns defined by

D@ = 2(n + 1) cos” 0

having become very popular.

The Eindhoven University of Technology, Eind-
hoven, The Netherlands, now possesses several computer
programs to calculate secondary patterns of parabo-
loids, hyperboloids, and ellipsoids excitated by this
theoretical feed pattern at their focuses. Moreover,
programs are available to design double reflector sys-
tems with the same “theoretical” feed system. However,
in most cases one wants to know the performance of an
antenna with a practical feed system. In the past, an-
tenna patterns have been plotted on paper and pre-
sented as graphs, the field strength, power density, and
phase being represented relative to a reference value,
mostly the peak of the beam.

If the directivity of such an antenna is required, an
accurately calibrated gain standard has to be used.
These measurements are not only time consuming but
also unsuitable for use in the computer programs previ-
ously discussed. This paper presents some inexpensive
digital techniques in antenna measurements both for
amplitude and phase. Digital techniques are particu-
larly useful in applications involving large quantities of
data, such as antenna measurements. The results, in the
form of punched paper tape are available immediately
after the measurements, which permits direct entry
into a computer (see computer programs [6]).



