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A 2-ft length of X-band waveguide (WR-90) was

measured by this method and a dissipative loss of

0.12 ~ 0.02 dB was found at 8700 MHz. If the correction

for the short cavity had been neglected, the apparent

loss would have been 0.18 dB. The irises were made

from 0.020-in copper by punching 3/16-in diameter

holes.

CONCLUSIONS

Since the losses of both irises and the launching and

receiving sections are all lumped together, the correc-

tion for these losses is approximate. However, the wave-

guide-attenuation measurement is practical only when

these losses are small enough so that the approximation

introduces negligible error. At the same time, these

losses are often too large to be neglected entirely.

The curve-fitting algorithm that has been described

is capable of determining the Q of microwave circuits

with as much accuracy and reproducibility as can be

hoped for in dealing with practical circuits. The repro-

ducibility of connections is generally the limiting factor

in circuits of the type studies. (Special cavities could be

designed as Q standards for more critical evaluation of

reproducibility and for intercomparison of different

instruments and methods. )

The algorithm has a modest ability to, find and con-

verge upon a resonance, if given a good initial guess,

which is usually a simple matter in production testing of

similar parts.

However, the search capability could be enhanced by

using the measured transmission magnitude as a weight-
ing factor. This technique would increase the computa-

tion required but would make better use of the mea-

surements.
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Impedance Measurements of Microwave Lumped

Elements from 1 to 12 GHz
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Ab.sfracf-The impedance measurement of small, microwave
lumped elements of the order of 1 mm has been extended up to
12 GHz by a technique in which the frequency and Q of a resonant

transmission line are perturbed by the connection of a lumped ele-

ment. With the use of low-loss resonant coaxial lines, the technique

has been applied to the measurement of lumped-element capacitors

ranging from 0.4 to 3.6 pF and inductors ranging from 1.1 to 4.3 nH.

Conductor Q values for capacitors as high as 1700 at 1.4 GHz and

100 at 12 GHz have been measured and estimates of dielectric Q

values for capacitors of over 5000 have been obtained. Single-turn

l.1-nH inductor Q’s of 40 at 1 GHz and 90 at 7 GHz have also been

measured. The capacitors and single-turn inductors are found to

have constant C and L values up to 12 GHz.
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1. INTRODUCTION

A

T MICROWAVE frequencies the increasing use of

solid-state active devices and thle trend toward

smaller electronic packages has stimulated an

interest in replacing distributed circuits with smaller

sized lumped-element circuits. In the past the use of

lumped elements has been limited in frequency to below

1 GHz by problems of fabrication and relatively high

losses. However, because of recent advancements in the

technology of thin-film fabrication [1], [2], low-loss

lumped-element circuits capable of competing with

distributed circuits have been made in the S- and

C-band ranges [1 ]– [6 ]. Unfortunately, the losses of

lumped elements operating in the gigahertz range have

been difficult to measure. The smaller :sizes and lower
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Fig. 1. (a) Schematic representation of a transmission line. (b) The
standing waves for two modes of resonance. (c) Series connec-
tion of a capacitor and the resulting standing-wave pattern.

resistances of the elements, and problems arising from

radiation have placed frequency limitations on conven-

tional measurement techniques. The commonly used

technique, a slotted-line measurement, is limited to

below 3 GHz by measurement accuracy and the magni-

tude of the corrections that must be made to the mea-

sured data [7].

‘This paper describes a resonance measurement tech-

nique capable of measuring the loss of the high-fre-

quency lumped elements. The application of the tech-

nique to the measurement of lumped-element inductors

and capacitors from 1 to 12 GHz and the results of the

measurements are presented.

II. THEORETICAL CONSIDERATIONS

The technique developed here for the measurement of

lumped-element impedance values makes use of the

frequency and Q of a resonant transmission line. By

connecting a lumped element to the line, the frequency

of resonance and Q are perturbed; and from the per-

turbations, the impedance of the element can be found.

Since the transmission line resonates at multiples of
some basic frequency, the impedance of the lumped

element can be found as a function of frequency.

Fig. 1(a) shows a generalized, open-ended transmis-

sion line with characteristic impedance 20 and propaga-

tion constant ~. It resonates when

A
—. 1
2

(1)

where n is the order of resonance, and 1 is the length of

the transmission line. The standing wave patterns for

the two lowest order modes are shown in Fig. 1(b).
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Fig. 2. Resonant system, “01,” composed of a transmission line,
“O,” with an input impedance Zi., and a lumped-element equiv-
alent circuit, “1,” with an impedance of 21.

A lumped element will perturb the standing-wave

pattern when it is connected in shunt between the two

conductors where a voltage exists, or when it is con-

nected in series with one connector where a current

exists. Fig. 1(c) shows an example of the latter case

where the series connection of the capacitor at the mid-

point of the line has perturbed mode 1 of Fig. 3(b).

Mode 2 is not perturbed since the current is zero at the

midpoint and no voltage is developed across the

capacitor.

Although the element can be connected anywhere

along the transmission line, the two most convenient

places are the midpoint and the ends. In general, the

series connection of an element at the midpoint affects

the odd-order modes, and the shunt connection affects

the even-order modes. An end connection of the element

affects all modes.

The impedance of the lumped eIement, expressed

here in terms of reactance and Q values, is found from

the frequencies and Q’s of the transmission line before

and after the insertion of the lumped element. Fig. 2

shows a transmission line “O,” open circuited at one

end, and connected to a lumped element “1, ” at the

other. The combined system ‘(01” resonates when

xl = 20 cot e (2)

where Xl is reactive part of 21, and O is the electrical

length of the transmission line. From (16) in the

Appendix,

f
0= —n7.

f.
(3)

where f is the frequency of resonance of system ‘{01, ”

and f. is the nth order resonance frequency of the trans-
mission line when both ends are open circuited. Thus

the reactance of the lumped element is determined from

the two frequencies of resonance.

The Q values for the separate parts of the resonant

system “01” add according to their weighted reciprocals

as derived in the Appendix (23)

The weighting factors Uol, Uo, and U1 are the stored

energies of the combined system, transmission line, and
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Fig. 3. Schematic of a transmission line showing adjustable coupling
to the generator and detector. BI and & are coupling coeffi-
cients.

lumped element, respectively, and are calculated from

the values of the lumped element and electrical length

of the line. For example, if the lumped element is an

inductor, the definitions of the stored energies given in

the Appendix lead to

Ul = ~ L(IO sin 0)2 (6)

and

Uol = Uo + UI (7)

where LO is the inductance per unit length of the line,

and L is the inductance of the inductor.

QOI is the measured Q of the system “01 ,“ and QO is

the Q of the transmission line interpolated to the reso-

nant frequency of the combined system. Thus, with the

known values of stored energy, QI can be calculated.

The accuracy of this measurement technique in-

creases as the ratio U1/Q1 of (4) becomes larger com-

pared to UO/Qo. Thus, for the best accuracy, both the

unmodified Q of the transmission line QO, and the ratio

of energy stored in the lumped element to that of the

line U1/ Uo, should be as large as possible. U1/ UO is de-

pendent on the ZO of the line.

The resonant frequencies and Q’s of the transmission
line can be measured by transmission or reflection meth-

ods as discussed in Ginzton [8]. Fig. 3 shows one method

of coupling the generator and detector to the transmis-

sion line for transmission measurements, The coupling

coefficients & and I% are adjusted by moving the end

connectors back and forth, When both coupling coeffi-

cients are equall and the transmitted power is 40 dB

down from the incident power, the measured Q is within

1 percent of the unloaded Q of the transmission line.

Rather than being variable, the end couplers can be

fixed; in this case, 91 and& may have to be measured to

find the unloaded Q. The transmission method is the
least complicated and can be the most accurate.

The reelection method of measuring Q has the advan-

tage of requiring only a one-port connection of the gen-

erator and the detector. Consequently, there is a greater

degree of freedom in the construction of the transmis-

sion line and in the connection of the lumped element.

I For a detector capable of measuring phase, the condition of
&=& can be achieved by moving the transmission line back and
forth between fixed couplers until the phase is an extremum.

Fig. 4. Resonator used for the Q measurement of capacitors

Reflection methods have the disadvant.age that the

determination of Q depends upon the value of the

coupling coefficient, which is hard to determine ac-

curately at frequencies in the S-band range and above. 2

Both coaxial and microstrip lines are suitable for use

as transmission-line resonators. Coaxial lines have the

advantages of high Q (400 at 1 GHz), negligible disper-

sion, and low radiation. Microstrip lines have the ad-

vantage of open construction, and thus are more ac-

cessible for the connection of the lumped element.

However, their disadvantages of lower Q (250 at 1 GHz)

dispersio~ and radiation make them less desirable than

coaxial lines for lumped-element measurements above

6 GHz.

III. TEST JIGS AND MEASUREMENT TECHNIQUES

Examples of coaxial-line resonators used for the

measurement of lumped elements are shc)wn in Figs. 4,

5, 7, and 8. The characteristic impedance of the lines is

50 !2, which results in reasonable UJ Uo values for

capacitances of about 1 pF and inductances of about

1 nH.

Fig. 4 shows the coaxial transmission line that is used

for measuring capacitors. 8 Its center conductor is a

50-mil diameter gold-plated rod, which is insulated from

the 162-mil (ID) outer copper conductor by Teflon

sleeves that cover its entire length. Two copper sleeves

with attached omni spectra miniature (OSM) connec-

tors are used to make sliding electrical connections with

the outer conductor. In a manner similar to that shown

in Fig. 3, they provide adjustable coupling to the

Q-measurement instruments.

The center conductor is severed electrically in the

middle to allow for the series connection of a capacitor

as shown in the close-up views of Fig. 5. The top view

is of a gold-plated quartz rod, with about 10 roils of the

plating removed in the middle. A unit of four 0.4-pF
capacitors is shown ‘(waxed down” to the conductor,

with one of the capacitors bonded between the two

halves of the conductor. The lower view slhows two gold-

plated copper rods joined with a polyethylene dowel

with about a 5- to 10-mils spacing between them. One of

a A reflection method for determining Q from the frequencies of
resonance and extrema in phase (see Ginzton’s E,qs. 9.82 and 9.20
[8]) minimizes the dependency of Q on the coupling coefficients.
While still more time consuming than the transmission method, it
has proven to be equally accurate.

~ This configuration was originally devised by Hughes, Napoli,
and Reichert of RCA Laboratories to measure the resistance of
Schot.tky-barrier diodes [9],
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Fig. 5. Enlarged view of the center conductor of the coaxial reso-
nator of Fi~. 4 showing the capacitor placement and bonding.
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Fig. 6. Equivalent circuit forthecapacitor bonded to the
coaxial resonator of Fig. 4.

Fig.7. Coaxial resonator used forthe Qmeasurements of inductors.

the four 0.4-pF capacitors is shown bonded between the

two halves. The bond wires are as short as possible to

minimize their series resistance. The gap in the rod and

the size of the capacitor are kept much smaller than a

half wavelength to allow a lumped-element equivalent-

model analysis.

Fig. 6 is a drawing of the transmission line with the

capacitor attached, and the equivalent-circuit model

that results. C’ is the capacitance of the gap between
the two center conductors, L is the inductance of the

bond wire, and C is the capacitance of the capacitor.

The coaxial transmission line used for the measure-

ment of inductors is shown in Fig. 7. It is a 3-in length

of commercially available semirigid cable with a 36-roil

diameter inner conductor. As with the previous line, the

copper sleeves at either end (with OSM connector at-

tached) provide adjustable coupling to the Q-measure-

ment instruments.

Lumped-element inductors cannot be inserted into

the coaxial line without causing problems of mutual

inductance and standing wave/inductor interactions.

Fig. 8. Close-up view of the resonator in Fig. 7, showing
the inductor placement and bonding.

COAXIAL RESONATOR
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Fig. 9. The equivalent circuit for the inductor bonded
to the resonator of Fig. 7.

Consequently, they are mounted outside the coaxial

line and are connected in shunt between the outer and

inner conductors. Access to the inner conductor is pro-

vided by a ‘(pin” inserted through a hole in the outer

conductor. Fig. 8 shows a close-up view of a 2-turn

inductor connected between the outer conductor and the

pin. The plane of the inductor is at right angles to the

outer conductor to reduce the mutual coupling.

The brass disks shown in Fig. 7 suppress radiation and

wave propagation down the outside of the line. For a

disk-to-inductor spacing of less than A/8, the effects of

these losses are negligible.

Fig. 9 shows the inductor connected to the coaxial

line and the resulting equivalent-circuit model. L’ and

C’ are the inductance of the pin and the capacitance

between the pin and outer conductor, respectively. L is

the inductance of the inductor and bond wire. For

spiral- or multi-turn inductors, there is an interturn

capacitance; and L should be replaced by a bond-wire

inductance in series with a distributed LC combination

for the inductor. To the first approximation, the LC

combination can be represented by a lumped parallel

LC circuit.

The extraneous capacitors and inductors introduced

with the connection of the lumped element must be
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TABLE I

SAMPLE DATA AND RESULTS FOR THE MEASUREMENT

OF A LUMPED-ELEMENT CAPACITOR

f (GHZ) f, (GHz) C (PF) Q Q. Q,

I .39419 1.77188 0.75 300 420 620

6.23909 7.10061 0.71 428 770 311

characterized in order to determine the reactance and

Q of the lumped element. This is accomplished by mak-

ing successive measurements—beginning with the un-

modified transmission line, making one change at a time

and ending with the connection of the lumped element.

For example, in Fig. 6 C’ and its Q are determined before

the capacitor is bonded into place. The inductance L

and the Q of the bond wire are determined with the

capacitor bonded into place, but short-circuited.

Finally, C and its Q are determined with the capacitor

open-circuited.

Whenever two elements cannot be physically sepa-

rated, such as L’ and C’ of Fig. 9 (without the inductor

L), their L and C values are determined from straight-

line plots of functions of w and impedance versus co’ (for

example, –jZQ =~2L’ – I/C’).

Table I shows two sets of sample data and results for

the measurement of a lumped-element capacitor con-
nected as shown in Fig. 6. The data are the resonance

frequencies and Q values of the transmission line before

the line is modified (fo, QO) and after the capacitor is

connected (~, Q). The capacitance C is calculated from

f and fo, knowing the values of C’ and L of Fig. 6 (C’

=0.11 pF, L =0.80 nH). The Q of the capacitor Qc is

calculated from Q and QO ,knowing C’, L, C, and the Q

values of C’ and L. Qo given in Table I is interpolated to

the frequency as discussed in the Appendix.

IV. RESULTS AND DISCUSSION

Using the coaxial transmission-line resonators and

the methods discussed in the previous section, lumped-

element capacitors from 0.4 to 3.6 pF, and inductors

from 1.0 to 4.3 nH in value have been measured at fre-

quencies from 1 to 12 GHz. The results of the measure-

ments are given below.

A. Capacitors

Fig. 10 shows Q versus frequency data for three

capacitors and for QO, the Q of the unmodified trans-

mission line. The 0.9- and 3.6-pF capacitors have highly

densified, low-etch-rate dielectrics,4 and both capacitors

have about equal series resistances. From the Q-versus-

frequency curves, their Q values vary nearly as f–312,

and are inversely proportional to the capacitance. The

0.75-pF capacitor has a less-densified, higher etch-rate

dielectric. The resistive effects of the bond wire are

‘(subtracted out” from the over-all Q of the capacitor so

4 Generally, a highly densified Si02 dielectric has a low etch rate
and a low loss.
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Fig. 10. Q versus frequency for three capacitors and for the unper-
turbed resonant system (QOline). The 0.75-pF capacitor (corrected
for bond wire) shows the effect of dielectric loss,

that the Q values shown in Fig. 10 are due to the capaci-

tor losses only.5 The Q-versus-frequency curve of this

capacitor is almost flat at low frequencies. Similar

curves have been obtained for several 0.4-pF capacitors.

The capacitance values for all the capacitors are con-

stant to within ~ 10 percent through 12 GHz.

It is expected that the losses of a capacitor result

from two sources: the dielectric material and the metal

conductors. Correspondingly, the Q of the capacitor can

be divided into two terms [6]. The equation for the Q

of a capacitor with conductor loss only is

(8)

where C is the capacitance, R. is the sheet resistance of

the metal plates, W is the width, Z the length, and co is

the angular frequency. Qc varies as f--3/2 (since R,

changes with skin depth), and inversely with capaci-

tance. The Q of a capacitor with dielectric loss only, is

Qd. &
tan 8

(9)

The loss tangent of the material, tan ti, and therefore

Qd, is approximately constant with frequency. The Q of

6 The other two capacitors were soldered upside down to the
center conductor, and no attempt was made to subst.ract the resistive
losses of the solder bonds.
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Fig. 11. Q versus frequency for a one-turn 1. l-nH inductor (cor-
rected and uncorrected for bond wire), and for the bond-wire
leads.

a capacitor with both kinds of loss is

(lo)

Fitting (10) to the data gives an estimate of the di-

electric and conductor Q values of the capacitor. The

straight lines of the 0.9- and 3.6-pF capacitors, and the

inverse variation of Q with capacitance suggest a con-

ductor loss only. For the 0.9-pF capacitor this gives an

estimate for Qd of Qd>5000” (since for Qd<3 Q., the

effect of a dielectric Q is noticeable). From the less

densified 0.75-pF capacitor, estimates of Qd = 600 and

Q.= 7200 at 1 GHz are obtained. Similar results have
been obtained from the three 0.4-pF capacitors.

From the estimates of Q., a lower limit to the con-

ductor Q of square copper capacitors is,

5400
(11)

‘c > ~W(GH.)C(pF) “

The difference between the experimentally determined

constant 5400 and the theoretically expected value of

29000 based on the bulk resistivity of copper is not

fully explained, although limitations on the exact deter-

mination of the constant, the roughness of the surface,

and the quality of the evaporated films are important

factors.

B. Inductors

Fig. 11 shows Q-versus-frequency curves for a single-

turn inductor with and without the resistance of the

bond wire (corrected and uncorrected, respectively), and
for the bond wire itself. The Q for the inductor (cor-

rected) increases as fl/2 at frequencies below 4 GHz as

expected from the theoretical expression,

UL
Q.y (12)

where L is the inductance and R is the series resistance.

The value for Q at 2 GHz corresponds to that predicted

from theory [1]. Above 4 GHz the Q falls off from its

~’lz variation and eventually decreases. The reason for

the fall-off and decrease is not known although current

crowding and radiation are possible explanations. All

inductors measured exhibit the same fall-off at the

higher frequencies. The measured inductance of 1.1 nH,

which is constant to within ~ 5 percent through 12 GHz,

is equal to that predicted from theory [1] [10].

Multi-turn or spiral inductors (see Fig. 8) are found

to have higher Q and inductance values per square area

than single-turn inductors, although the Q values are

less than predicted (from [1]) and the Q-versus-fre-

quency plots fall off at lower frequencies. The measured

and theoretical values of inductance are nearly the

same.

A spiral-turn inductor has an associated interturn

capacitance that resonates with the inductance. The

self-resonance frequencies of these inductors is much

lower than those for a single-turn inductor. For example,

a two-turn, 2.9-nH inductor can have a self-resonance

frequency of 8 to 10 GHz, whereas a single-turn l.1-nH

inductor shows no distributed effects up to 12 GHz.

V. CONCLUSIONS

A technique for the measurement of reactance and

Q values of small, microwave lumped-element inductors

and capacitors has been presented. It extends the capa-

bility for lumped-element measurements up to 12 GHz

by making use of the accurately measured frequencies

and Qs of resonant coaxial lines. Using the technique,

Q values as high as 1700 at 1.4 GHz and 100 at 12 GHz

have been measured. The results of measurements on

capacitors and inductors show that lumped elements

can be fabricated with low loss and constant L and C
values through X band.

APPENDIX

Presented below are the derivations of the equations

for calculating the reactance and Q of a lumped element

from the measured resonance frequency and Q data. It

is assumed, in all cases, that the reactance are much

larger than the resistances so that the two can be treated

separately.

A. Resonance Condition

Fig. 2 shows an open-circuited transmission line “O,”

with an input impedance Zi., connected to a lumped-

element circuit “1, ” with impedance Zl, Neglecting the

resistances, the combined system resonates when the

reactive part at ZI is equal to the complex conjugate of

Zin, or

jXl = jZO cot O (13)

where
27rfl

o=—
v

(14)
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andf, 1, and v are the frequency of resonance, the length,

and the velocity of wave propagation of the transmis-

sion line, respectively, and Xl is the reactance of the

lumped-element circuit.

Without the lumped elements attached, the trans-

mission line resonates when

27rf.1
$=— = n7r (15)

v

where f% is the nth-order resonance frequency. Substi-

tuting (15) into (14) gives O in terms of two resonance

frequencies,

f
o = — PZn-.

f.
(16)

“O,” as,

Q,. : (22)

where Uo is the energy stored in the tra.nsmission line

when the current is maximum. Q. corresponds to the

measured Q when the transmission line is self-resonant;

and for transmission lines with a series loss only, such

as the coaxial lines described in Section III, Q. is a

“straight-line” function of frequency when plotted on

log–log paper.

Substituting (20), (21), and (22) into (18) gives:

(23)

Combining (16) and (13) results in the final equation
This corresponds to (4) in the text, where only one

lumped element is considered. The Q of the jth element
for the resonance condition, Qlj can be found by rewriting (23) as,

f

()
xl = 20 cot — 12T .

f.
(17)

If the lumped-element circuit is connected in the middle
of the transmission line, ~ is replaced by f/2; also, for a

series connection, ZO is replaced by 2Z0, and for a shunt

connection ZO is replaced by 20/2.

The reactance Xl of the lumped-element circuit is

determined from f, f., n, and 20. As mentioned in Sec-

tion III, when 21 is due to more than one element, the

reactance of each element is determined by successive

measurements.

B. The Q Equation

Reference to Fig. 2 shows that the total power loss of

the resonant system “01” is equal to the power losses

of the transmission line “O,” and the lumped-element

circuit “ 1” (which consists of i elements):

Pol = Po + z Pli. (18)

The quality factor Q of a resonant system is related

to the power” loss P and the stored energy U of the

system by,

Q.;.

Thus for the combined system “01, ”

COuol
Qo, = —.

Pol

(19)

(20)

For the ith lumped element of circuit 1, Q is defined as,

(21)

where Uli is the max;rnum energy stored in the element.

This definition is equivalent to the conventional defini-

tions of the Q for lumped elements.

A Q variable, Q. is defined for the transmission line

11

(

Uol Uo , lJli
—. —— —— —

Qlj
E -–) (24)

Ulj QU Qo Qli

where ~’ is the sum for all ;, i #j.

The stored energy for the transmission. line is

U. = ~ ~ Jo’ (10 sin (l?*) )zd(i?x) (25)

1 20
.— — 102(20 – sin 20)

8U
(26)

where O is defined in (16). The maximum energy stored

in each of the lumped elements Uli is calculated from a

knowledge of the current going into the entire lumped

element system, the current in the transmission line,

I= Iosin O (27)

the particular circuit model of 21, and the values of the

lumped elements. The total stored energy can be calcu-

lated for the maximum current condition, where

UOI = UO + ~“ Ulk (28)

where ~“ is the summation of Ulk for inductors only

(k #j).

Equations (26), (27), and (28) apply for the case

where the lumped element is connected in the middle of

the transmission line when the substitutions following

(17) are made.

Q. is the Q of the transmission line interpolated from

the measured Q versus frequency data to the resonance

frequency of the combined system “O 1,” and QU is the
n The QIi are the Q’s of ‘hemeasured Q of system ‘(01.

“i” lumped elements, which are determined by separate

measurements.
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Digitized Antenna Measurements

JAKOB DIJK, CORSTIAAN KRAMER, EDUARD J. MAANDERS, SENIOR MEMBER, 133EE,

AND ADRIAAN C. A. VAN DER VORST

Absfract—A low-cost automated measuring method is presented
determine the directive gain and relative phase of microwave

antenna feed systems in digital form. Using large existing computer

facilities, the output data may be used as input data to compute
secondary patterns of arbitrary reflector antennas. The use of step-
ping motors is a key for cheaper and easier operations.

INTRODUCTION

I

N MODERN ANTENNA engineering, especially

for long-range radar, radio astronomy, satellite

communications ground stations, or multibeam

antenna systems for satellites, it is very important to

know the antenna pattern as regards amplitude and

phase and its polarization in all directions. ,Mostly, the

current distribution method is used to calculate the

entire radiation pattern of bodies of revolution.

Silver [1, p. 420] has developed a number of formulas

enabling one to calculate the secondary pattern of a

paraboloid with the source at the focus, while Rusch

[2], [3] has demonstrated that the same technique may
be used for a hyperboloid or ellipsoid. It is not the pur-

pose of this paper to go into details with regard to the
complicated equations used for calculation, but it ap-

pears that in all equations the directive gain .D(O, +) [4]

and its relative phase pattern of the primary feed play

an important role. Other applications, such as designing

double reflector systems [5] with high efficiency, require

detailed information with regard to the feed pattern.

i?lanuscript received March 11, 19’i’l; revised August 30, 1971.
The authors are with the Eindhoven University of “1’ethnology,

Eindhoven, The Netherlands.

Sometimes the performance of an antenna system may

be predicted by using “theoretical” feeds, the class of

circular symmetrical feed patterns defined by

D(e) = 2(?2 + 1) Cos” o

having become very popular.

The Eindhoven University of Technology, Eind-

hoven, The Netherlands, now possesses several computer

programs to calculate secondary patterns of parabo-

loids, hyperboloids, and ellipsoids excitated by this

theoretical feed pattern at their focuses. Moreover,

programs are available to design double reflector sys-

tems with the same “theoretical” feed system. However,

in most cases one wants to know the performance of an

antenna with a practical feed system, In the past, an-

tenna patterns have been plotted on paper and pre-

sented as graphs, the field strength, power density, and

phase being represented relative to a reference value,

mostly the peak of the beam.

If the directivity of such an antenna is required, an
accurately calibrated gain standard has to be used.

These measurements are not only time consuming but

also unsuitable for use in the computer programs previ-

ously discussed. This paper presents some inexpensive

digital techniques in antenna measurements both for

amplitude and phase. Digital techniques are particu-

larly useful in applications involving large quantities of

data, such as antenna measurements. The results, in the
form of punched paper tape are available immediately

after the measurements, which permits direct entry

into a computer (see computer programs [6]).


